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leaf blotch resistance. The major QTL on chromosome 3BL 
with resistance contributed by Naxos was consistent across 
all environments and explained up to 12 % of the pheno-
typic variation. Another major QTL on 3B with resistance 
from SHA3/CBRD was significant in 2010, 2013 and the 
testing data set and explained up to 12 % of the phenotypic 
variation. Minor QTL were detected on 1B, 3AS, 5BS, 
5BL, 7A and 7B. The 5BS QTL was likely caused by Snn3-
B1, with sensitivity contributed by Naxos. The 5BL QTL 
mapped to the Tsn1 region, but was likely caused by other 
mechanisms since both parents were insensitive to ToxA.

Introduction

Parastagonospora nodorum blotch (SNB), caused by 
Parastagonospora (syn. ana, Stagonospora; teleo, Phae-
osphaeria) nodorum (Berk.) Quaedvlieg, Verkley & Crous 
(Quaedvlieg et al. 2013), is a necrotrophic fungal disease 
affecting leaves and glumes. It occurs in many wheat pro-
duction regions around the world with a temperate and 
rainy climate, and causes severe grain shriveling and sub-
stantial yield losses under epidemics (Solomon et al. 2006). 
Yield reductions have been reported up to 31 % and even 
around 40 % (Bhathal et al. 2003; Eyal et al. 1987).

P. nodorum used to be the dominant leaf blotch pathogen 
of wheat in the UK during the 1970s and 1980s (Bearchell 
et al. 2005) and is still found to be the main causal agent for 
leaf blotch in Norway (Ficke 2010) though Septoria tritici 
blotch (caused by Zymoseptoria tritici) became dominant 
in the UK recently (Bearchell et al. 2005) and has increased 
in importance in Northern Europe (Scharen 1999). Under 
natural infection in the field, symptoms of SNB can be 
very difficult to distinguish from other coexisting leaf 
blotch diseases such as tan spot (caused by Pyrenophora 
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tritici-repentis) and S. tritici blotch. Consequently, severity 
of the leaf blotch disease complex is usually recorded.

To prevent yield losses, intensive fungicide application 
is inevitable which in fact poses a high selection pressure 
for fungicide resistance (Fraaije et al. 2005) and added pro-
duction costs to the farmers. Breeding resistant wheat vari-
eties in conjunction with effective cultural practices is con-
sidered to be the most cost-effective and environmentally 
benign way to manage leaf blotch.

Due to limited understanding of the resistance genetics  
and specific host–pathogen interactions, breeding for resist-
ance to SNB has made slow progress. In the 1990s, crude 
extract of P. nodorum was found to induce the disease in 
vitro and subsequently applied to screen the resistance 
level of breeding material in early generations (Keller et 
al. 1994; Wicki et al. 1999). More recently, studies have 
shown that P. nodorum and other necrotrophic leaf blotch 
pathogens interact with their hosts in an inverse gene-for-
gene manner based on necrotrophic effectors (NEs, also 
known as host-selective toxins). So far, at least six NEs 
(SnToxA, SnTox1, SnTox2, SnTox3, SnTox4 and SnTox5) 
and corresponding host sensitivity loci (Tsn1, Snn1, Snn2, 
Snn3, Snn4 and Snn5) have been described for the wheat—
P. nodorum pathosystem (Francki 2013; Friesen et al. 2012; 
Friesen and Faris 2010). This has opened up new possibili-
ties in resistance breeding by identification and elimination 
of host sensitivity loci.

Identification of molecular markers closely linked to 
sensitivity/resistance loci is essential in marker-assisted 
selection for SNB resistance. Many QTL have been iden-
tified on the chromosomes such as 1B, 2B, 2D, 4B, 5A, 
5B, 5D, 6A and 7A for seedling resistance (Adhikari et al. 
2011; Arseniuk et al. 2004; Czembor et al. 2003; Faris and 
Friesen 2009; Friesen et al. 2009, 2012; Liu et al. 2004b; 
Reszka et al. 2007) and 1B, 2A, 2D, 5A, 5B and 7A for 
adult plant leaf resistance (Aguilar et al. 2005; Friesen  
et al. 2009, 2012; Shankar et al. 2008).

Evidence has been provided that QTL on 1AS, 1BS, 
2DS, 4BL, 5BS, and 5BL are corresponding to the sensi-
tivity loci Snn4, Snn1, Snn2, Snn5, Snn3 and Tsn1, respec-
tively (Abeysekara et al. 2010; Friesen et al. 2007, 2008, 
2012; Liu et al. 2004a, b, 2006). These QTL were detected 
after inoculation with single isolates at the seedling stage 
and accordingly accounted for large proportions of the 
variation. QTL from other studies, however, have not been 
reported to be associated with any known sensitivity loci. 
Most of them explained less than 20 % of the phenotypic 
variation (reviewed by Francki 2013).

A recombinant inbred line (RIL) population from a cross 
between SHA3/CBRD (resistant) and Naxos (susceptible) 
was initially developed for genetic analysis of Fusarium 
head blight and powdery mildew resistance (Lu et al. 2012, 
2013). In some of the powdery mildew trials that were 

exposed to rainy conditions during grain filling, segregation 
for leaf blotch resistance was observed.

To investigate the genetic basis of the SNB resistance 
segregating in the RIL population, field testing was con-
ducted in mist-irrigated hillplot nurseries over 4 years. The 
objectives were to: (1) identify the main genetic factors 
associated with SNB resistance in the RIL population; (2) 
determine whether any of these factors correspond to known 
NE sensitivity loci; and (3) compare with results of other 
QTL studies of seedling and adult plant resistance to SNB.

Materials and methods

Plant materials

A RIL population of 181 F6 lines was developed by single 
seed descent from the cross SHA3/CBRD × Naxos, which 
was initially developed for genetic analysis of Fusarium 
head blight and powdery mildew resistance (Lu et al. 
2012, 2013). SHA3/CBRD is a spring type breeding line 
from CIMMYT with the pedigree ‘Shanghai-3//Chuanmai 
18/Bagula’ and selection history “-0SHG-6GH-0FGR-
0FGR-0Y”. Naxos, a German spring variety, was devel-
oped by Strube GmbH & Co.KG from the cross ‘Tordo/
St.Mir808-Bastion//Minaret’. In naturally infected field 
trials in Norway, SHA3/CBRD showed high resistance to 
SNB, whereas Naxos was susceptible. Toxin assays showed 
that both parents are insensitive to SnToxA and SnTox1, 
whereas Naxos is sensitive and SHA3/CBRD insensitive to 
SnTox3 (Tim Friesen, pers. comm.).

Field trials

Field testing was conducted with a subset of 168 RILs, 
which excluded a few lines with very late maturity or poor 
seed set. The RILs were tested together with their parents in 
hillplot trials naturally infected with P. nodorum during the 
2010, 2011, 2012 and 2013 seasons at Vollebekk Research 
Station in Ås, Norway. The symptoms of SNB are difficult 
to distinguish from other foliar diseases such as tan spot 
and S. tritici blotch, so actually the leaf blotch complex 
was scored in this study. However, PCR assays of randomly 
collected leaf samples from the 2010 and 2011 field trials, 
and microscopic inspection of leaf samples from 2012 and 
2013 confirmed that P. nodorum was the dominating path-
ogen (data not shown). Field trials were carried out in an 
alpha lattice design with two replications. The trials were 
mist irrigated for 5 min every half an hour at daytime to 
promote leaf blotch epidemics and avoid competing dis-
eases like powdery mildew.

Leaf blotch severity was assessed visually as the per-
centage of diseased leaf area based on the whole canopy. 
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Two scores were registered in 2010, 2011 and 2013, one 
in 2012 based on the disease development on susceptible 
checks. Typically, the first score was done when the most 
susceptible lines had reached 70–80 % severity (about 
3 weeks after heading), and the second score about 1 week 
later when some lines had already reached 100 % sever-
ity. Developmental traits reported to affect leaf blotch rat-
ing (Aguilar et al. 2005; Tommasini et al. 2007) were also 
recorded. Maturity date was scored in all 4 years, while 
heading date and plant height were recorded in 2011, 2012 
and 2013.

Additionally, leaf blotch data obtained from three pow-
dery mildew experiments (Lu et al. 2012) at Vollebekk in 
2009 and Staur research farm (close to Hamar, Norway) 
in 2009 and 2010 were used as testing data. In those field 
seasons, the plants were subjected to rainy conditions dur-
ing the grain-filling stage which stopped powdery mildew 
development and promoted leaf blotch. Leaf blotch sever-
ity was scored once in all three experiments in the same 
manner as described above. To avoid possible confounding 
effects from powdery mildew, these data were only used to 
test the detected QTL from the mist-irrigated leaf blotch 
trials.

Statistical analysis

Analyses of variance were performed using the PROC 
GLM procedure in SAS v. 9.2 (SAS Institute Inc.). Herit-
ability (broad sense) was estimated from the ANOVA infor-
mation using the formula h2

= σ 2
g /(σ 2

g + σ 2
E/r) within 

a year and the formula h2
= σ 2

g /(σ 2
g + σ 2

g×y/y + σ 2
E/ry) 

across years, where σ 2
g  is genetic variance, σ 2

g×y is geno-
type-by-year interaction, σ 2

E is error variance, y is num-
ber of years, and r is number of replicates. The mean leaf 
blotch severity of each line was estimated in SAS with the 
LSMEANS statement in PROC MIXED. The Pearson’s 
correlation coefficients were calculated using the PROC 
CORR procedure in SAS.

Genetic map construction

Initial QTL mapping was carried out based on the existing 
linkage map for Fusarium head blight and powdery mil-
dew studies (Lu et al. 2012, 2013). This linkage map was 
constructed from the genotypic data of 181 lines including 
283 DArT and 271 SSR loci. Later, 13 markers (16 loci) 
close to Tsn1, Snn1, Snn2, Snn3-B1, Snn3-D1 and Snn4 
(Abeysekara et al. 2009; Friesen and Faris 2010; Reddy 
et al. 2008; Zhang et al. 2009, 2011) were added. Exclud-
ing three redundant loci, the final genetic map was devel-
oped with the software JoinMap v. 3.0 (Van Ooijen and 
Voorrips 2001). Map distances were based on the Kosa-
mbi function with minimum LOD score of 2. Consensus 

map information was used to assign linkage groups to 
chromosomes.

QTL analysis

QTL mapping was performed mainly by MapQTL v6.0 
(Van Ooijen 2009). In order to determine the covariates 
in MapQTL, leaf blotch severity in each environment was 
regressed against the means of days to heading (DHm), 
days to maturity (DMm) and plant height (PHm), all of 
which were significant. In the QTL analyses, the cor-
responding DH, DM and PH from the same leaf blotch 
experiment were used as covariates. If the corresponding 
data were not scored, the overall means were used instead. 
Interval mapping (IM) was first run with DH, DM and 
PH as covariates with the LOD threshold 3.0. All the sig-
nificant QTL were used as initial cofactor set to determine 
the cofactors for multiple QTL mapping (MQM) with the 
backward elimination procedure in MapQTL (α = 0.02). 
Both MQM and restricted MQM (rMQM) mapping were 
conducted with cofactors and covariates. However, QTL 
results from MQM and rMQM were no better than those 
from IM based on the LOD curve; some QTL became 
even less significant. A possible reason for this could be 
that cofactors were not close to the QTL peak due to lim-
ited map resolution, which could affect the power of QTL 
detection.

Two other QTL mapping softwares, PlabQTL v1.2 (Utz 
and Melchinger 2003) and QTL IciMapping v3.2 (Li et al.  
2008), were also tried in order to challenge the results 
from MapQTL. To make the results comparable across 
the softwares, adjusted leaf blotch severities were used in  
PlabQTL and IciMapping. These were calculated based 
on the covariate estimation in MapQTL by subtracting the 
estimated effects of the associated traits from observed 
severity (Table S1).

Multiple regressions with significant QTL were run in 
PlabQTL using the adjusted leaf blotch severities. By elim-
inating the non-significant QTL at each round, multiple 
regressions were re-run until all the QTL in the model were 
significant. Genetic map drawing and QTL marking were 
conducted by the software MapChart v.2.1 (Voorrips 2002).

Single marker analyses were conducted between mark-
ers for known sensitivity loci and adjusted leaf blotch 
severities with Pearson’s correlation method.

Results

Phenotypic evaluation

A broad variation was observed for both leaf blotch sever-
ity (Fig. 1) and associated traits (Fig. S1) in the RIL 



2638 Theor Appl Genet (2014) 127:2635–2644

1 3

population. The disease severity ranged from 0 to 100 % in 
all 4 years, favored by mist irrigation. However, the sever-
ity in 2012 had higher standard deviation but similar sever-
ity range.

Highly significant correlation coefficients were observed 
for leaf blotch severities across 2010, 2011 and 2013, while 
lower between 2012 and other years (Table 1). Despite sig-
nificant genotype-by-environment interaction and moderate 
correlation coefficients (r = 0.47–0.78), a considerable her-
itability of 0.84 was still observed across years (Table 2).

Leaf blotch severity showed significant negative correla-
tions with DH (r = −0.39 to −0.61) and DM (r = −0.43 
to −0.62) at similar magnitudes, and with PH (r = −0.25 
to−0.43) at a lesser magnitude.

Leaf blotch severities obtained from powdery mildew 
trials were used as a testing data set. Severities were con-
sistent across years (r = 0.64–0.75) and even showed high 
considerable correlation coefficients (r = 0.30–0.74) with 
data from the mist-irrigated leaf blotch trials (Table 1).

QTL mapping results

Seven significant QTL and one putative QTL were detected 
in the four leaf blotch experiments at Ås (Table 3, Fig. 2). Six 
out of these eight QTL were significant in the testing data.

The most consistent QTL was detected on 3BL near 
the marker wPt-4933, explaining up to 12 % of the phe-
notypic variation. It was significant in all environments, 

Fig. 1  Frequency distributions 
of leaf blotch severity in the 
SHA3/CBRD × Naxos RIL 
population. Leaf blotch sever-
ity is shown along the X-axis 
and number of lines in each 
category on the Y-axis. The 
average severities of SHA3/
CBRD (S) and Naxos (N) are 
indicated by arrows

Table 1  Pearson’s correlation coefficients among leaf blotch severities and developmental trait means in the SHA3/CBRD × Naxos RIL popu-
lation

*** <0.0001, ** <0.001, * <0.01

Leaf blotch severities from mist-irrigated leaf 
blotch trials (Ås)

Leaf blotch severities from powdery 
mildew trials

2010 2011 2012 2013 Days to heading Days to maturity 2009 Ås 2009 Hamar 2010 Hamar

2010 0.73*** 0.69*** 0.67***

2011 0.73*** 0.62*** 0.64*** 0.48***

2012 0.47*** 0.50*** 0.36*** 0.41*** 0.30***

2013 0.78*** 0.75*** 0.47*** 0.73*** 0.74*** 0.61***

Days to heading −0.45*** −0.45*** −0.39*** −0.61*** −0.47*** −0.39*** −0.41***

Days to maturity −0.56*** −0.62*** −0.43*** −0.56*** 0.65*** −0.52*** −0.46*** −0.44***

Plant height −0.43*** −0.36*** −0.25* −0.38*** 0.01 0.09 −0.18 −0.24* −0.31***

2009 Ås 0.75*** 0.64***

2009 Hamar 0.66***
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and the resistance was contributed by Naxos. In the test-
ing data, this QTL was significant in two environments and 
with the mean data. Another QTL, with resistance from 
SHA3/CBRD, was found on 3B explaining over 11 % of 
the phenotypic variation. This QTL was significant in two 

environments and verified with the testing data of Ås in 
2009 and the mean.

The QTL on 1B, 5BL and 7A were detected in two 
environments and the mean data, explaining 2–8 % of the 
total phenotypic variation. The 5BL QTL is near the Tsn1 

Table 2  Analysis of variance 
for leaf blotch severity and 
associated traits and their 
heritabilities in the SHA3/
CBRD × Naxos RIL population

Traits Source df Mean square F value P value Heritability

Leaf blotch Genotype 167 1,427.83 6.11 <0.0001 0.84

Year 3 17,590.13 75.32 <0.0001

Genotype × year 501 233.55 2.22 <0.0001

Rep (Years) 3 1,761.60 16.76 <0.0001

Block (Rep) 28 166.66 1.59 0.0294

Error 590 105.08

Days to heading Genotype 167 35.52 9.11 <0.0001 0.89

Year 2 10,508.53 2,694.70 <0.0001

Genotype × year 334 3.90 2.50 <0.0001

Rep (Years) 2 0.33 0.21 0.8087

Block (Rep) 28 2.85 1.83 0.0067

Error 471 1.56

Days to maturity Genotype 167 63.86 2.84 <0.0001 0.65

Year 3 16,105.58 716.85 <0.0001

Genotype × year 501 22.47 2.59 <0.0001

Rep (Years) 3 80.33 9.26 <0.0001

Block (Rep) 28 15.86 1.83 0.0061

Error 638 8.67

Plant height Genotype 167 376.43 10.78 <0.0001 0.91

Year 2 7,362.10 210.90 <0.0001

Genotype × year 334 34.90 1.25 0.0136

Rep (Years) 2 246.01 8.80 0.0002

Block (Rep) 28 29.81 1.07 0.3762

Error 473 27.97

Table 3  QTL for leaf blotch severity in the SHA3/CBRD × Naxos RIL population

The percentage of explained phenotypic variation (R2) in the multiple regression models is shown

QTL are listed if they were over the LOD threshold of 3 in at least in one environment and showed significant contribution in the multiple 
regression models

QTL detected above the LOD threshold in the corresponding environment are indicated in bold

Chr. Closest marker Mist-irrigated leaf blotch trials (Ås) Testing dataset

2010 2011 2012 2013 Mean R source 2009 Ås 2009 Hamar 2010 Hamar Mean

1B wmc619 2.3 6.3 3.6 Naxos 7.1

3AS gwm2 9.1 7.6 Naxos 4.4

3B wPt-4127 11.3 6.1 SHA3/CBRD 11.7 2.6

3BL wPt-4933 8.0 11.7 2.7 7.2 9.0 Naxos 3.4 3.1 2.5

5BS wPt-5346 3.7 SHA3/CBRD

5BL fcp1 6.1 2.6 5.8 SHA3/CBRD 6.5

7A wmc603 3.3 8.3 4.6 Naxos

7B wPt-0963 2.9 8.8 Naxos 3.4

R2 total 34.4 17.4 10.9 29.0 23.1 21.0 3.1 7.1 8.5
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Fig. 2  Chromosomes with significant QTL, with corresponding LOD 
curves obtained from interval mapping (IM). If there was no QTL 
detected based on the mean, the environment with significant QTL 
effect was marked instead with the year at the end of the QTL name. 

Genetic distances are shown in centimorgans to the left of the chro-
mosomes. A threshold of 3.0 is indicated by a dashed vertical line in 
the LOD graphs. The approximate positions of centromeres are indi-
cated by arrows
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marker fcp1. The LOD curve of the 5BL QTL peaked at 
two neighboring positions in 2 years with the highest peak 
at 30 cM in 2010 and 42 cM in 2011. They are consid-
ered the same QTL due to overlapping confidence inter-
vals. The rest of the QTL were detected in either one or 
two environments and explained less than 10 % of the 
variation.

Effects of NE sensitivity loci

Of the known NE sensitivity loci, data were obtained for 
a total of 10 markers linked to Tsn1, Snn1, Snn2, Snn3-
D1, Snn4 and Snn5. Other markers were either monomor-
phic or did not map to the expected chromosomes and 
were not considered for this analysis. This included all 
six tested markers for Snn3-B1 (BE606637, BE446811, 
gwm234, cfd20, wmc149 and wmc728), and the most 
closely linked reported marker for Snn5 (wmc349, 
Friesen et al. 2012).

The Tsn1 marker fcp1 was associated with adjusted 
leaf blotch severity. The effect was significant in 2010 and 
for the mean data across years. Another marker, barc163 
reported to be linked to Snn5 showed significant correlation 
only with leaf blotch severity in 2010. In contrast, markers 
linked to other NE loci had no effect in any of the environ-
ments (Table 4).

Discussion

Phenotypic data

This study is based on natural infection. The P. nodorum 
pathogen population can be expected to differ from year to 
year, which would lead to different interactions between 
sensitivity loci and pathogen races. The different reaction 
patterns can accordingly result in the detection of different 
genetic factors in different years. The pathogens for S. trit-
ici blotch and tan spot could also have added complexity to 

the study, although P. nodorum was by far the most domi-
nating leaf blotch pathogen in our four trials.

Highest standard deviation was observed in 2012 but 
with similar severity range, indicating that fewer genes 
were responsible for the disease in that year. This was also 
supported by the QTL results in which only one QTL was 
detected above the significance threshold.

The high negative correlations between severity and 
developmental traits complicates the QTL analysis based 
on original disease scores, and makes it difficult to distin-
guish true resistance QTL from those caused by the con-
founding effects of earliness and plant height. There are 
two possible solutions. Firstly, to run QTL analysis on leaf 
blotch severity and associated traits separately; QTL for 
disease resistance without coincident QTL for associated 
traits are more likely real (Lu et al. 2013). Alternatively, the 
QTL analysis can be based on adjusted leaf blotch severi-
ties, which are calculated by subtracting the fitted leaf 
blotch value from the observed leaf blotch scores. Here we 
used the latter, which is equivalent to the mapping strategy 
in MapQTL by running the original data with plant height, 
days to heading and days to maturity as covariates. In addi-
tion, it can help to avoid that some under-the-threshold 
QTL for associated traits were not recognized as confound-
ing factors to leaf blotch. The adjusted leaf blotch data 
were not correlated with DH, DM or PH, which indicates 
that this adjustment was effective in avoiding the confound-
ing effects from associated traits.

QTL mapping

A total of eight QTL were detected in this study. Although 
we cannot rule out that some of the signal from the pheno-
typic data could be caused by other leaf blotch pathogens 
present at low frequencies in the field, we find it likely 
that the reported QTL are involved in resistance/suscepti-
bility to P. nodorum. Firstly, monitoring of the pathogen 
population in the field trials either by PCR or microscopic 
inspection confirmed that P. nodorum was the dominating 

Table 4  Pearson’s correlation 
coefficients between marker 
alleles for known toxin 
sensitivity loci and adjusted leaf 
blotch severities

* P < 0.01

Locus Chr. Marker 2010 2011 2012 2013 Mean

Tsn1 5BL fcp1 0.23* 0.12 0.14 0.14 0.22*

Snn1 1BS psp3000a 0.12 −0.03 −0.02 −0.12 −0.04

Snn2 2DS cfd51 −0.13 −0.06 −0.12 −0.03 −0.09

cfd56 −0.11 0.03 −0.04 0.06 0.01

Snn3-D1 5DS cfd18 0.1 0.06 0.06 −0.05 0.02

gwm190 0.08 −0.01 0.04 −0.06 0.01

Snn4 1AS BG262267 0.04 0.09 0.04 −0.02 0.03

Snn5 4BS gwm375 0.18 0.10 −0.05 0.09 0.11

barc163 0.21* 0.08 −0.09 0.10 0.09

wmc679 0.14 0.11 −0.05 0.03 0.07
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pathogen in all seasons. Secondly, preliminary data from 
our testing with single isolates of P. nodorum at the seed-
ling stage in the same RIL population have identified cor-
responding LOD peaks at most of the adult plant resistance 
QTL reported in this study.

Two QTL were detected on 3B. The one on 3BL appears 
to be novel and showed consistent effect across all the envi-
ronments and significant effect with the testing data, which 
indicates its potential as a resistance source. The other 3B 
QTL was located near the centromere, at a similar posi-
tion as a seedling resistance QTL reported by Reszka et 
al. (2007) and Adhikari et al. (2011). A tan spot resistance 
QTL has also been reported close to the centromere on 3B 
(Faris and Friesen 2005).

The 5BL QTL was located close to the Tsn1 locus which 
has been cloned, and Tsn1–ToxA is the best studied inter-
action in both the wheat–P. tritici-repentis and wheat–P. 
nodorum pathosystems (Faris et al. 2010). However, based 
on toxin assay, both parents were insensitive to ToxA and 
did not segregate at this locus (Tim Friesen, pers. comm.). 
Additionally, the flanking markers fcp620 and fcp394 
(Zhang et al. 2009) are monomorphic in the RIL popula-
tion, and both parents carry the alleles associated with 
insensitivity (data not shown). It indicates that this 5BL 
QTL is probably a different, but closely linked locus for 
NE sensitivity or other resistance mechanism. Other stud-
ies also reported QTL on 5BL responsible for leaf blotch. 
Czembor et al. (2003) found a seedling QTL on 5B near the 
marker barc32 explaining 30 % of the phenotypic varia-
tion. In the present study, the 5BL QTL peaked more distal 
in 2011 and for the mean data than in 2010. Such differ-
ence was also observed in a RIL population in which the 
position of 5BL QTL were different (Francki et al. 2011). 
It indicates that there might be a complex of multiple genes 
on 5BL involved in the susceptibility or resistance mecha-
nism to the pathogen.

The 5BS QTL was likely caused by Snn3-B1, although 
the identity of this QTL could not be confirmed since all 
the most closely linked published markers to this locus 
were monomorphic. However, further evidence comes from 
toxin assays showing that Naxos is sensitive to Tox3 while 
SHA3/CBRD is insensitive (Tim Friesen, pers. comm.). 
However, the effect of this QTL was small and only 
detected in 2010.

The 1B QTL detected here was peaking about 10 cM 
distal to a QTL responsible for flag leaf resistance in the 
BR34 × Grandin population on 1BS (Friesen et al. 2009), 
20 cM from a QTL responsible for the glume blotch resist-
ance in Forno × Oberkulmer (Aguilar et al. 2005) accord-
ing to Somers’ consensus map (Somers et al. 2004). Based 
on the marker analysis (Table 4), this QTL is likely not 
caused by Snn1. The resistance at this locus might be 
the result of a sensitivity locus on 1RS in SHA3/CBRD, 

which carries the 1B/1R translocation (Lu et al. 2012). Or 
it could possibly be from Naxos through other resistance 
mechanism.

The QTL close to the centromere on 7B was mapped at 
a similar position as a leaf blotch QTL with resistance from 
Forno (Aguilar et al. 2005). A glume blotch QTL was also 
detected in this 7B centromeric region (Schnurbusch et al. 
2003; Shankar et al. 2008). There might be more than one 
QTL in this region due to the limited resolution near the 
centromere, which led to overlapping peaks in 2012. The 
3AS QTL mapped to the same region as the tan spot resist-
ance gene tsr4 (Tadesse et al. 2010). Other minor QTL 
were either novel or could not be compared.

According to the marker analysis of known NE sensitiv-
ity loci, the Snn5-linked marker barc163 was significant in 
2010. However, the most closely linked marker to Snn5—
wmc349 was monomorphic, and no QTL was detected on 
4B in the QTL analysis, either in single years or for the 
mean across years. We can therefore conclude that Snn5 
did not show any important effect in this population.

Generally, QTL caused by NE sensitivity show large 
effect at the seedling stage when plants are inoculated with 
single isolates (Abeysekara et al. 2009; Friesen et al. 2009; 
Liu et al. 2004b). However, at the adult plant stage in the 
field, when inoculated with the same isolate, these effects 
became smaller (Friesen et al. 2009). Adding the diverse 
and dynamic natural pathogen population in our study, such 
reduced effects will inevitably be diluted by other pathogen 
isolates with different NEs. This is supported by the QTL 
mapping results, which showed that many minor QTL were 
involved rather than a few major ones.

Conclusion and prospects

In this study, genetic analysis showed that resistance in 
SHA3/CBRD was controlled by one major QTL on 3B and 
two minor QTL on 5BS and 5BL. The susceptible parent 
Naxos contributed one major QTL on 3BL and four minor 
QTL. The minor QTL on 5BS was likely a result of Naxos 
carrying the sensitivity allele of Snn3. Less resistance loci 
were detected contributed by SHA3/CBRD than Naxos, 
which indicates that the resistance in SHA3/CBRD is con-
trolled by many genes with minor effects. The markers 
linked to the QTL on 3B and 3BL could have the potential 
for application in marker-assisted selection.

These QTL were identified under natural infection with 
a complex pathogen population which had different viru-
lence factors. It is important to clarify the nature of the 
interaction between these QTL and the pathogen. Hence, 
more detailed investigation of this population will be our 
further work. Differential isolates and NE filtrates will 
be applied to test the population and parents for specific 
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interactions at the seedling stage, and the map resolution 
around important QTL will be refined by adding more 
markers.
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